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The problem of the propagation of waves in an inhomogeneous medium 
is solved on the basis of the equation for a partial wave of the total 
field. After changing the independent variable x (the geometrical 
coordinate) to A(x) (the amplitude factor of a direct partial wave of 
the total field in the inhomogeneous medium] a modification of one 
of the asymptotic methods of the theory of nonlinear oscillations is 
applied. 

It is well known that the differential equation 

d*~ (ko, z) / dz~ + k~ (~o, z) ~ (ko, z) = 0 (0.1) 

plays an important part in the theory of propagation of acoustic [1] 
and electromagnetic [2] waves, that it describes a quasi-stationary 
temperature field relative te moving coordinates [3], and, on passing 
from k(k0, x) to the function [xZ-v  (k 0, x)] it describes the passage 
of matter waves through a potential barrier [4]. However, no method 
has so for been developed which allows one to find the connection 
between the function of the medium parameters k = k(k0, x) and the 
total field function r =$(k0, x), and which is general enough to allow 
one to determine r x) with any degree of accuracy when the pa- 
rameter k(k 0, x) is an arbitrary function of the coordinatex. The 
asymptotic method for the solution of wave propagation problems set 
out beIow allows one to determine, on the basis of a selected auxil- 
iary function, the corresponding functions ~(k0. x) and k(k0, x) 
simultaneously with any degree of accuracy specified in advance. 

At the same time as solving the problem of wave propagation, the 
asymptotic method allows one to consider also the case of non-propa- 
gation of waves, when a solution occurs which is not oscillatory, but 
behaves like reai exponents and describes bound states belonging to 
the discrete spectrum. This also lends confirmation to the assumption 
made in the appendix of [5] that there may be a smooth transition 
between the properties of the discrete spectrum and the properties of 
the quasi-stationary states. 

The asymptotic method is based on equations obtained by the 
method of internal conditions [6,7]. which may be regarded as a 
generalization of the well-known Oseen theorem in optics [8] to wave 
processes of a different nature. These equations for the direct a(x) 
and inverse ~x)  partial waves of the fie!d r in an inhomogeneous 
medium have [9] the form 

~" (k~, z) + p (k~, z) ~' (~,, z) + 1~ (k0, z) [k (k0, z) -- 

- ip (ko. z ) ]~  (ko, z) = 0 ,  (0.2) 

~" (k,, z) + p (k,, z) ~' (~o, z) § ~ (~0, ~) [~ (~o, z) + 

+ ip (k o, z)] I~ (k,, z) = O, (0.3) 

where 

p (k 0' x) = 2 [1~ k (k~ z)]' - -  tin k' (k0, x)]', (0.4) 

and differentiation with respect to the coordinate x is indicated by a 
prime. The problem is solved in three stages. 

In the first stage the amplitude A and phase e factors are separated 
from the direct wave and a change is made from the variable x to the 
variable A(x). The second stage reduces to looking for the general 
solution of the differential equation (0.1) with the help of phase 
trajectories, and the third consists in passing back from A(x) to the 
independent variable x. 

Besides the independent equations (0.2) and (0.3), the solution pro- 
cess also makes use of a system of coupled first-order equations 

: '  (~, x) + [~ (k,, ~) --. ik (ko, z ) ] a  (k;, z) = 

= ~ .  (k,, z) I~ (k., x) ,  (0.5) 

~' (k,. z) + [ .  (k,, z) + ik (k,, x)] ~ (k,, z) = 

= x (~,, x ) ~  (k,, x), 

2n (k,, z) = [ lnk (k0, x)]' (0.6) 

somewhat more general [6] than the initial equation (0.1), 

1 .  T h e  b a s i c  r e l a t i o n s  o f  t h e  a s y m p t o t i c  m e t h o d .  
T h e  g e n e r a l  s o l u t i o n  o f  E q .  (0 .1)  i s  e x p r e s s e d  in t e r m s  

o f  t h e  n o n t r i v i a l  p a r t i c u l a r  s o l u t i o n  [c~(x) + fl(x)] in  t h e  

f o l l o w i n g  m a n n e r :  

x 

0 

w h e r e  C 1 a n d  C 2 a r e  c o n s t a n t s  o f t n t e g r a t i o n d e t e r m i n e d  

f r o m  t h e  i n i t i a l  c o n d i t i o n s .  W e  s h a l l  l o o k  f o r  t h i s  

s o l u t i o n  in  t h e  f o r m  

(x) = Yie  ~' ,  [C, § C~Y,e-L~r,], (1 .2)  

y l e ~'I', = 
x 

= [0~(x) § ,~(x)l, Y l e - r e ' =  I [~ (x l )  §  (1 .3 )  
0 

T h e  p a r t i c u l a r  s o l u t i o n  [c~(x) + fi(x)]  m a y  b e  e x -  

p r e s s e d  in t e r m s  o f  a ( x )  o n l y ,  t a k i n g  (0.5) ,  (0 .6)  i n t o  

a c c o u n t ,  

.~k(~)  ' "  " - ~ [ t - - ' k 2 ( z )  l 
[ ~ ( x ) + ~ ( x ) ]  = zlk-q~ tx] ,k=-~Tj~(z)}. (1.4) 

K e e p i n g  in  m i n d  t h e  n e c e s s i t y  o f  p a s s i n g  to  t h e  

i n d e p e n d e n t  v a r i a b l e  A(x)  l a t e r  on ,  w e  r e p r e s e n t  t h e  

w a v e  c~(x) in  t h e  f o r m  

a ix)  = A(x )e  i•(x) , (1 .5 )  

a n d  r e w r i t e  t h e  p a r t i c u l a r  s o l u t i o n  (1 .4)  o f  E q .  (0 .1)  a s  

1, (~ )  , ,  , 
[a (x) + ~ (x)] = 2 ~ A~x) {L' (x) + [9' (x) - -  

~ l k  (x)ln}V'l X exp {iIq) (x) § are  t g  ~: (x) - -  k (x) L(x) ]}, (1.6) 

w h e r e  

L (x) = A'(x)A'~(x) + k'(x)k-~ (x). (1.7) 
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Since the r igh t  s ide  of (1.6) conta ins  only the a m p l i -  
tude and phase  f a c t o r s  of the wave c~ (x), we sha l l  r e -  
s t r i c t  o u r s e l v e s  in what  fo l lows to a c o n s i d e r a t i o n  of 
Eq.  (0.2). Using  the method  deve loped  in the theo ry  of  
non l inea r  o sc i l l a t i ons ,  which r e d u c e s  [10,11] to a 
g r a p h i c a l  cons t ruc t ion  of i n t e g r a l  cu rves  in the phase  
plane,  we in t roduce  into (0.2) e x p r e s s i o n s  fo r  c~'(x) 
and c~ "(x) ob ta ined  by d i f f e r en t i a t i ng  (1.5). 

g 

2 

0 t 2 fl 

Fig .  I 

The s y s t e m  of two d i f f e r e n t i a l  equat ions  connect ing  
the ampl i tude  A(x) and phase  go(x) f a c t o r s  of the d i r e c t  
p a r t i a l  wave o~ (x) then has  the fo rm 

A"(x)  -+- p (x)A'(x) + (k ~ (x) --  [~' (x)l~}A(x) ---- 0, (1.8) 

0 (1.9) 

A f t e r  m a k i n g  the change of v a r i a b l e  x ~ A(x) we 
u s e  th is  s y s t e m  to so lve  the wave  p ropaga t i on  p r o b l e m  
in a l o s s l e s s  inhomogeneous  m e d i u m  by the a s y m p t o t i c  
me thod .  

2. D e s c r i p t i o n  of the me thod  of so lv ing  the p r o p a -  
gat ion p r o b l e m .  We sha l l  c a r r y  out a change of v a r i -  
ab le  in the s y s t e m  (1.8), (1.9), t ak ing  the wave n u m b e r  
to be a funct ion of the a m p l i t u d e  f a c t o r  A(x), i . e . ,  
k(x) =ik[A(x)] ~= k(A), 

dk dk dA d'l~ k'A"-I- k" (A') 2 
dx dA dx = k'i4'' - ~  ~ 

We obta in  

:, k" k"  p ( x ) = p ( A ) A ' - - A " ( A ' ) - ' ,  p ( A ) = 2 - . ~ - - - - ~  

for  the  coef f i c ien t  p(x) d e t e r m i n e d  by (0.4). 
I n t roduc ing  (2.1) into (1.8) and (1.9), we w r i t e  

(2 .1)  

p (A)A_a (A,), + k ~ = (q),)2 or ~'  = 

= Ip (A)A -1 (A') ~ + k2] '/,, (2.2) 

A A ' ~ "  - -  A (~p' - -  k )A"  + {[2 + Ap (A)J(p' - -  

- - A k p  (A)} (A') ~ --. O. (2.3) 

D i f f e r e n t i a t i n g  go' with r e s p e c t  to the c o o r d i n a t e  
x, we obta in  

i . p 

We se t  e x p r e s s i o n s  ~p' and go" in (2.3) and se t  A'  = 
= F, then 

Let  0 = a r c  tg F" be the  angle  of inc idence  of the 
tangent  to the curve  F = F(A) in the phase  p lane  AOF. 
We then obtain the key equation of the a sympto t i c  
method  of so lv ing  wave p ropaga t ion  p r o b l e m s ,  r e m e m -  
b e r i n g  that  F '  = F ' F ,  in the fo rm 

tg 0 = {p (A) -t- [], (A) -{- ]~ (A)F~](I)-1 (A, F)}F, (2.5) 

h (A) = k" (A) + 2k (A)A -1 , (2.6) 

]~ (A) = p (A) [Ak (.4)] -1 {p (A) + 3 (2A) -~ § 

+p" (A) [2p (A)]-I}, (2.7) 

(1) (A, F) = k (A ) - -  [p (A )A - •  2 -(- k ~ (A)lV0. (2.8) 

It is  not a di f f icul t  m a t t e r  to find the funct ions  
f j (A) ,  f2(A), r (A,F) and p(A) e n t e r i n g  into Eq.  (2.5), 
fo r  the function k(A) = k[A(x)] c o r r e s p o n d i n g  to the 
function k ~ k(x) spec i f i ed  by the condi t ions  of the 
given p r o b l e m .  Consequent ly ,  the angle  0 may  a l so  
be d e t e r m i n e d  fo r  aa a r b i t r a r i l y  chosen  point  P(A, F) 
on the phase  plane AOF, and subsequen t ly  a s y s t e m  of 
c u r v e s  F = F(A) may  be c o n s t r u c t e d  which in a c c o r -  
dance  with the a s y m p t o t i c  method  of the t heo ry  of 
non l inea r  o sc i l l a t i ons ,  wi l l  be ca l l ed  the d i r e c t i o n  
f ie ld  in the phase  p lane .  

i[J / 

Fig. 2 
We note t h r e e  b a s i c  p r o p e r t i e s  of the f i r s t  s t age  in 

so lv ing  the p r o b l e m  which m u s t  be kept  in mind in 
c a r r y i n g  out the f i r s t  s tage ,  i . e . ,  in p a s s i n g  back  f rom 
the v a r i a b l e  A to the independent  v a r i a b l e  x. 

(a) The s y s t e m  of c u r v e s  F --- F(A) of the d i r e c t i o n  
f ie ld  m a y  e a s i l y  be t r a n s f o r m e d  to the s y s t e m  of 
c u r v e s  x" = f (A)  and a f t e r  i n t eg ra t ion  (with r e s p e c t  to 
the v a r i a b l e  A) t r a n s f e r r e d  to the p lane  AOx. The 
s y s t e m  of c u r v e s  ob ta ined  A = A(x) c h a r a c t e r i z e s  the 
dependence  of the a m p l i t u d e  f ac to r  of the d i r e c t  p a r -  
t i a l  wave  A(x) on the c oo rd ina t e  x; the c u r v e s  of this  
s y s t e m  a r e  sh i f ted  r e l a t i v e  to each o the r  a long the 
Ox a x i s .  Th is  p r o c e d u r e  e n a b l e s  us  to a s c e r t a i n  i m -  
e d i a t e l y  the a m p l i t u d e  f ac to r  A(x) of the d i r e c t  p a r t i a l  
wave  o~(x) e n t e r i n g  into the p a r t i c u l a r  so lu t ion  of the 
in i t i a l  equat ion (0.1) as  a funct ion of the in i t i a l  c o o r d i -  
na te  x. 
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(b) While de t e rmin ing  A(x), it is also poss ib le  to 
es tab l i sh ,  f rom the chosen function k = k(A), the 
in i t ia l  law of var ia t ion of wave n u m b e r  along the coor -  
dinate, i . e . , t 0  find the function k = k(x) co r re spond ing  
to any of the funct ions A = A(x) found as desc r ibed  in 
(a). At the same  time, an unambiguous  connection is 
es tab l i shed  between the law of var ia t ion  of the p a r a m -  
e te r  k = k(x) and the ampli tude factor  of the d i rec t  
pa r t i a l  wave A(x) en te r ing  into the p a r t i c u l a r  solut ion 
(1.6) of the in i t ia l  d i f fe rent ia l  equation (0.1). 

(c) In o rde r  to find the phase factor  of the d i rec t  
pa r t i a l  wave (p = r we mus t  employ Eq. (2.2), which 
d e t e r m i n e s  the gradient  of the r equ i r ed  phase factor 
(P'(x). Taking into account  that 

r = ~'F 

it is convenient  to r e p r e s e n t  Eq. (2.2) in the form 

cp" = {p (A)A -~ + [k (A)F-'(A)]2)V*. (2.9) 

Fig. 3 

After integration with respect to the variable A it is 

not difficult to obtain the function (p = ~(A) for any 
curve F = F(A) of the previously constructed direction 

field. In accordance with (b) it is here possible, by 
choosing any specific curve A = A(x) and thus speci- 

fying the function k = k(x) unambiguously, to transform 
the funct ion q~ = ~(A) obtained into the r equ i r ed  function 

= ~p(x). Thus f rom the funct ion k = k(A) se lec ted  it 
is not diff icult  to find both the law of var ia t ion  of the 
p r o p e r t i e s  of the inhomogeneous med ium along the 
coordina te  k = k(• and the d i r ec t  pa r t i a l  wave a (x) = 
= A(x)e iq~(x) of the total  f ield in the m e d i u m .  Of grea t  
impor t ance  is the poss ib i l i ty  we now have of applying 
this to both direct and i n v e r s e  variants of the wave 
propagation problem, which reduces to a choice of the 

function k = k(A) arising from the required law k = k(x) 

for the medium, or from the required total field r 

in the medium. 
The second stage in solving the problem reduces to 

finding the general solution r of the initial equation 
(0.1). For this reason we change the variable in (1.6) 
from x to A just as when we were establishing with the 
help of the function k = k(A) the connection between the 
direct partial wave c~ (x) and the law of variation of the 
properties of the medium along the coordinate k = k(x), 

i . e . ,  we pass f rom k(x), k '  and ~0, to K(A), k" and r 

i n + N = 2  ] k ~- Ai(M' + N')'/ 'exp[i(~+ 

+ are~tg NM--)I (2.10) 

where  the following symbols  a re  employed for the 
aux i l i a ry  functions:  

[~_ ( k l~]V, k 1 k" (2.ii) 
M =  + ~ 7 )  J - - ~ "  N = "-X + T '  

g 

0 t g y 4 * 

Fig. 4 

Compar ing  (2.10) and (1.3), it is not diff icult  to 
e s t ab l i sh  that the funct ions  Y1, '~l, Yz, ~z appear ing  in  
the genera l  solut ion {1.2) a re  equal to 

k A (M 2 + N ~ )  '/', Y i = 2  -F- 

Y~ = (]1 ~ + ]2D v', 

Here  

A, AI 

J ' =  I Rt(A)dA, J ' =  f R,(A)dA, 
o o 

B i (A) = cos 2~i  [Yi~FI -i, 

T1 = ~ -F arctg-~-~, (2.12) 

W2 = arc tg ]-~. (2.13) 

R e (A) = sin 2W i [Y12F] -i. (2.14) 

A / -  
/ z  

// / 
! 2 3 ~ A 

Fig. 5 

Thus,  in o r d e r  to find the ge ne r a l  solut ion r of the 
wave equat ion (0.1) s t a r t i n g  f rom the funct ion k = k(A) 
and any def ini te  chosen curve  F = F(A) f rom the p r e v i -  
ously  cons t ruc t ed  d i r ec t ion  plane, it is n e c e s s a r y  to 
t r a n s f e r  the graphs  of ~P = (p(A) to the phase plane AOF 
(in acco rdance  with pa rag raph  (c) of the f i r s t  s tage of 
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the solution),  and a l so  the g raphs  M -- M(A) and N -, 
N(A) f rom f o r m u l a s  (2.11). F u r t h e r ,  the funct ions 

Y~ ~- Y~(A) and ,IQ ~- @~(A) m u s t  be found with the help  
of f o r m u l a s  (2.12). In o r d e r  to find the funct ions Y2 ~ 

Y2(A) and ,I~ 2 ~ ~2(A), which a r e  d e t e r m i n e d  by the 
r e l a t i o n s  (2.13), we mus t  f i r s t  of a l l  cons t ruc t  the 
cu rves  R 1 ~ RI(A ) and R 2 x R2(A ) f rom (2.14). 

Fig .  6 

In a c c o r d a n c e  with (1.2) the funct ions which a r e  
found Y1, 'I'1, Y2 and ~I' 2 give a full  d e s c r i p t i o n  of the 
g e n e r a l  solut ion ~(A) of  the in i t i a l  equat ion (0.1), which 
is r e p r e s e n t e d  as  a function of the i n t e r m e d i a t e  v a r i -  
ab le  A(x). 

In the t h i rd  s t age  of the solut ion of the p r o b l e m  we 
p a s s  back  f r o m  the v a r i a b l e  A(x) to the o r i g i n a l  inde -  
pendent  v a r i a b l e  x. It is  h e r e  n e c e s s a r y  to keep  in 
mind  that  the law of va r i a t i on  of the wave v e c t o r  a long 
the coo rd ina t e  k ffi k(x), c o r r e s p o n d i n g  to the g e n e r a l  
solut ion r found and to the chosen  function k = k(A), 
was  d e t e r m i n e d  p r e v i o u s l y  (see  p a r a g r a p h  (b) of the 
f i r s t  s t age  of the solu t ion) .  Af t e r  the change of v a r i -  
ab le  f rom A to x, the g e n e r a l  solut ion r of Eq.  (0.1) 
is  r e p r e s e n t e d ,  a c c o r d i n g  to (1.2), in the f o r m  of four  
funct ions  Y1(x), ~l(x), Y2(x) and 92(x), and c o r r e s p o n d s  
to the a p p r o p r i a t e  funct ion k = k(x). 

3. C e r t a i n  p r o p e r t i e s  of the a s y m p t o t i c  method  
which allow the solution o f  the problem to be s i m p l i f i e d .  
When us ing  the a s y m p t o t i c  method  fo r  so lv ing  the p r o b -  
l em of  wave  p r o p a g a t i o n  in an inhomogeneous  m e d i u m  
we should keep  in mind  that  i t  is  an e s p e c i a l l y  s i m p l e  
m a t t e r  to c o n s t r u c t  the s o - c a l l e d  bounda ry  t r a j e c t o r i e s  
on which the phase  r  of the wave a (x )  is  cons tan t .  
A c t u a l l y  the a u x i l i a r y  function (2.8) is  p u r e l y  r e a l  in 
a c c o r d a n c e  with the r e q u i r e m e n t s  of the p r o b l e m .  
Thus fo r  the e x p r e s s i o n  which a p p e a r s  in i t  unde r  the 
roo t  s ign  

(pA- 'F ~ + k ~) > O. 

By def in i t ion  F ~ A' ,  and so in a c c o r d a n c e  with 
(2.4) we obta in  

(pA- 'F '  + k') = (m')' > O. (3.1) 

Consequent ly ,  the phase  of the wave o~(x) does  not  
have  an i m a g i n a r y  p a r t  (i.  e . ,  t h e r e  is  no damp ing  

when the wave p ropaga t e s  in the med ium) .  It fol lows 
from (3.1) that  in p a r t i c u l a r  

F • k (--  pA-9-v, ,  p (A ) • O. 

The i n v e r s e  condit ion 

(pA-1F 2 + k 2) .~  0 

a s s u m e s  the case  of p u r e l y  i m a g i n a r y  phase  ment ioned  
in the in t roduct ion,  when the wave does  not p ropaga te  
in the med ium but  is  exponent ia l ly  damped,  i . e . ,  when 
t h e r e  is  a n o n o s c i l l a t o r y  solut ion which d e s c r i b e s  
bound s t a t e s  be longing to the d i s c r e t e  s p e c t r u m .  This  
c a se  is  not c o n s i d e r e d  h e r e  be c a use  of lack  of space .  

The i n t e r m e d i a t e  ca se  ( c r i t i c a l  condit ion) o c c u r s  
when 

(pA-1F 2 + k ~) = O. 

This  ca se  c o r r e s p o n d s  to the condi t ion ~ '  ffi 0, while  
the cu rves  in the plane AOF d e s c r i b e d  by the equation 

F = k (-- pA-1) -'/, (3.2) 

are the boundary trajectories, the construction of which 
is a considerable aid not only in establishing the con- 
nection with the function k ,= k(x), but also in finding 
the curves F = F(A). The basic properties of the curves 
F -~ F(A) forming the direction field are as follows: 

a) The direction field in the plane AOF is symmet- 
rical with respect to the OA axis, and so it suffices to 
consider only the region in which F _~ 0. Passing to 
the case F < 0 is completely equivalent to the specular 
reflection of the curve A = A(x) in the plane AOx rel- 
ative to the OA axis. 

0 

-8 
J 

Fig. 7 

b) Po in t s  at  which F" = 0, i . e . ,  po in ts  at  which the 
tangents  to the cu rve  F ~- F(A) of the d i r e c t i o n  f ie ld  
a r e  ho r i zon ta l ,  a r e  d e t e r m i n e d  fo r  F ~ 0, F ~ ~ by 
the equat ion 

p8 

_ p' ~ _  l ,p I ' / , I  
2AI~ / 1~A 3 J " 

(3.3) 
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c) O n  t h e  o t h e r  h a n d  f o r  t h e  c a s e  F ~ 0 c o r r e -  

s p o n d i n g  to  t h e  O A  a x i s ,  i t  f o l l o w s  f r o m  E q .  (2 .5)  t h a t  

f o r  f l  a 0, p *  

l i m F - *  ~ f o r  F - - - , 0 ,  

a n d  c o n s e q u e n t l y  t h a t  t h e  t a n g e n t s  to t h e  c u r v e s  F = 

= F ( A )  a r e  v e r t i c a l  a t  t h e  p o i n t s  w h e r e  t h e y  i n t e r s e c t  

t h e  O A  a x i s ,  w h i l e  t h e  p o i n t s  w h e r e  f l  = 0, p = o0 r e -  

q u i r e  a d d i t i o n a l  i n v e s t i g a t i o n .  

M o r e o v e r ,  

l i r a  F" ---* o ~ f o r  F - -  ~ ,  a n d  l i r a  F"  ~ ~ f o r  A ~ 0 ,  

i . e . ,  t h e  c u r v e s  F = F ( A )  h a v e  v e r t i c a l  a s y m p t o t e s  

f o r  F ~ ~ a s  w e l l  a s  f o r A ~  0.  

d )  I t  f o l l o w s  f r o m  t h e  l i n e a r i t y  o f  t h e  w a v e  p r o p a -  

g a t i o n  p r o b l e m  in  a n  i n h o m o g e n e o u s  m e d i u m  w i t h o u t  

d i s p e r s i o n  t h a t  w h e n  t h e  p a r a m e t e r  k ( A )  o r  i t s  a r g u -  

m e n t  i s  m u l t i p l i e d  b y  a c o n s t a n t  q u a n t i t y  c i t  i s  o n l y  

n e c e s s a r y  to c a r r y  o u t  t h e  c o r r e s p o n d i n g  c h a n g e  o f  

s c a l e  a l o n g  t h e  c o o r d i n a t e  x ( o r  o f  t h e  a m p l i t u d e  o f  

t h e  d i r e c t  p a r t i a l  w a v e ) .  A c t u a l l y ,  i t  f o l l o w s  f r o m  t h e  

m a i n  e q u a t i o n  o f  t h e  p r o b l e m  (2 .5 )  t h a t  in  p a s s i n g  f r o m  

t h e  p a r a m e t e r  k ( A )  to  t h e  n e w  p a r a m e t e r  k~  = c k ( A ) ,  

w h e r e  e i s  a c o n s t a n t ,  i t  s u f f i c e s  to  c h a n g e  t h e  f u n c t i o n  

F ( A )  in  t h e  m a i n  e q u a t i o n  to  t h e  f u n c t i o n  F ~  = o F ( A ) .  

T h e  r e s u l t  o f  t h i s  i s  t h a t  w h e n  t h e  p a r a m e t e r  k ( A )  i s  

c h a n g e d  to  t h e  p a r a m e t e r  k~  t h e  v a r i a b l e  A = A ( x )  

m u s t  b e  c h a n g e d  to  t h e  v a r i a b l e  A ~ = A ( x / c ) ,  a n d  k ( x )  

to k ~ = ok(x/e). Similarly, the change of variable k(A)-~ 

k(cA) requires the change A = A(x) ~ A ~ c-IA(x) 

while retaining the parameter k = k(x). 

4. An example of the solution of the wave propagation problem. 
We shall first of all consider the grapho-analytic variant of the asymp- 
totic method as being more intuitive. We shall choose a function k = 
= k(A), which shows how the parameter k of the inhomogeneous 
medium depends on the coordinate x, in the following form: 

i . e . ,  we take that 

k (,1) = A-~ 

k (x) = (az + b)-L (4.1) 

- . ~ , v  a 

�9 / 4 5  

l 2 3 

J 

F i g .  8 

Since p(k) = - -A - t ,  it(A) = 0, fa(k) = 0, according to (2.1), 
(2a3), (2.7), the main  equation (2.5), determining the angle of 
inclination 0 of the tangents to the family of curves F = F(A), is written 
in the form 

tg8 = F'(-4)  = - - F A  "a. (4.2) 

Thus the equation of the boundary trajectories (3.2) has the form 

t P (.4) = } ( A ) [ - -  p ( A ) A - I ]  ' ' ] '  = A - I .  (4 .3)  

The boundary trajectory constructed from (4.3) is drawn as a broken 
line in Fig. 1, and the region corresponding to the case of a purely 
imaginary phase factor ~(x), i . e . ,  to conditions which forbid the 
propagation of waves, is cross-hatched. 

:f 
2 

"'~'~' ~ 

/ I  I 
1 

~ __...- 

f ' - ' - T  t A.. .--  

f !  I ', 
g 4 6 8 ,z' 

Fig. 9 

just as in the theory of nonlinear osciilations, it is not difficult to 
construct the direction field, ioe. ,  the system of curves F = F(A), by 
constructing, through arbitrarily chosen points situated in the region 
which allows wave propagation, a system of straight segments whose 
angle of inclination relative to the OA axis is determined at every 
point of the plane AOF by (4.2). The form of the boundary trajectory 
should be taken into account in order to render the construction easier. 

By way of example,  we shall construct in the plane AOF of Fig. 1, 
one of the curves of the family F = F(A) for which we have F = 0.5, 
0.25 and ~ w h e n A  = 1 . 2 a n d  0, and map it onto the plane xOA. In 
order to do this, according to Fig. 2 we transfer this curve from the 
AOF system of coordinates to the x'OA system of coordinates and 
employ the relations A' -- F which is obvious by definition. Conse- 
quently, the function F- '  -- x will, for the curve selected, be equal to 
2.0; 4.0 and 0,  respectively, and the curve of Fig. 1 will map into 
the straight line in Fig. 2 passing through the origin of coordinates. 

In order to map the straight line of Fig. 2 drawnonthe intermediate 
plane x" OA into a curve on the plane xOA, dictated by the conditions 
of the wave propagation problem, it must be integrated with respect 
to the variable A which has been temporarily introduced, and so, 
leaving the vertical axis unchanged, we pass from x" to x on the 
horizontal axis in accordance with the rules of  graphical integration. 

Since the integration is carried out for arbitrary initial conditiom, 
it is possible to obtain a series of other curves in addition to the curve 
x = x(A) which has been drawn, and which is at the same t ime the 
graph of the function A = A(x). All these curves will differ from each 

other onIy in the magni tude of their displacement along the Ox. 
The original function k = k(x) is constructed from the curve A = 

= A(x), which has been found, and the graph k = k(A), which is given, 
in accordance with Fig. 3, where, in addition to the integral curve 
1 already considered, curves 2,3 and 4 are also drawn, for which the 
constant coefficients characterizing the function k = (ax + b) -1 are 
equal to a =1, 1, --1,  --1 and b = 0, 1, 5, 10 ,  respectively. 

The general factor y1e i? lof  the solution (1.2) of Eq. (0.1), corre- 
sponding to the chosen function k = k(k) is determined in the following 
manner.  On the plane AO~o of Fig. 4 the curve ~ = p(A) is drawn, 
having been found by graphical integration of the curve ~.(A) con- 
structed according to formula (2.9), which it is convenient to transcribe 
in the following manner  for this purpose: 

~" = A-~ [(A#)-~--tI ' / , .  (4.4) 

In carrying out the construction it should be kept in mind that the 
initial conditions in the integration are taken into account by the 
choice of constants C t and C z in (1.1). Further the parameters M(A) 
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and N(A) are calculated from (2.11). For the case of (4.1), in partic- 
ular, we obtain 

M (.4) = {[! -- (AF)']'/' -- I} (A'P) -I, (4.5) 

N (.4) = -- A-*. (4.6) 

Finally, graphs of the functions Y~ = YI(A) and 't, 1 = *{A) are 
constructed in Fig. 5 using formulas (2.12). 

In order to find the general solution 't'(X) of the wave equation (0.1) 
we must  also find the functions Y2 = Y2(A), which is done by drawing 
graphs of the functions R t = Rr(A ) and R 2 ; R2(A ) from (2.14), and 
subsequently integrating them with respect to the variable A. The 
respective operations, and also the curves for the functions Jr(A) and 
J2(A), are presented in Figs. 6 and 7. The required functions Y2 = 
= Y2(A) and '~z = ~2(A), calculated from (2.13), are drawn in Fig. 8. 

In carrying out the final, third stage of the ~olution, i . e . ,  in 
passing from A to x, it is necessary to be specific and choose one 
particular curve from the family of curves k = k(x) (Fig. 3), constructed 
with the help of the curve Fig. 1, for example,  curve 2, and also the 
graph of the function A = A(x) corresponding to the curve chosen. The 
latter is drawn in Fig. 2 as a still unaveraged broken line, and is, 
moreover, represented in the first square of Fig. 3. Here the transfor- 
mat ion of the variable reduces (since in accordance with the graphs of 
Fig. 3, a completely determined value of the coordinate x corresponds 
to each value of A(x)) to replacing the argument A of the functions 
Yt = YI(A), 't,~ = ~t(A), Ys = Y2(A) and "2 = ~2(A) by the argument x. 

The functions Y1 = Yl(x), ~1 = 'Pz(x), Yz = Y2(x) and q'2 = ' 2 (x )  
constructed and drawn in Fig. 9 completely determine the solution of 
the problem of wave propagation in an inhomogeneous medium, for 
which the law (4.1) of variation of the parameter  along the axis of the 
coordinate x is described by curve 2 of the fourth square of Fig. 3. 

5. Analysis of the asymptotic method and c o m p a r i s o n  with the 
exact  solution of the propagation problem. We shall carry out a com-  
parison of the proposed asymptotic and exact  methods using the analyt-  
ic variant of the asymptotic method, i . e . ,  without recourse to graph- 
ical construction. Considering the example which has just been solved 
for k(A) = A'2 ,  we shali, for this purpose, first of  alI determine the 
function A = A(x) starting from (4.2). Integrating the equation F" = 
= --FA -l, we obtain 

F = r/~aA - I .  (5.1) 

Further, taking into account that F = A'  in Eq. (5.1) and integrating it, 
we obtain 

A = (ax -[- b) 'h. (5.2) 

Here 1/2a  and b are consants of in tegra t ion  Thus the given 
function k = k(A) = A -z corresponds to the following dependence of the 
parameter  of the inhomogeneous medium on the coordinate: 

k (x) : k [A (x)] : ( ax@b)  -1. (5.3) 

Comparison of the relation obtained (5.3) with the graph Fig, 3 
attests to the fact that the constant of integration b characterizes the 
magni tude of the displacement  of the curve k = k(x) along the hori- 
zontal axis. As has already been noted, this displacement  is determined 
only by the inital conditions assumed in the graphical integration of 
the function A = A(x-), plotted in Fig. 2 in the form of a straight line. 
Whence it follows that when integrating graphically with respect to 

1/2 the variable A the lower l imit  must be set equal to b , then the 
choice of one or other of the family of curves F = F(A) drawn in Fig. 1 
and characterized by the given function k = k(A) serves as the constant 
of integration a. On passing to the coordinates A, x this now corre- 
sponds to the function A = A(x.). 

In particular, the choice made  in Fig. 1 of the curve passing 
through the point with coordinates F = 0.5, A = 1, (in solving the 
problem by the grapho-analyt ic  variant) is equivalent to choosing a = 
= 1 in (5.3). When determining the phase of the direct partial wave 

by integrating (4.4) with respect to the variable A and subsequently 
taking (5.1) into account we write 

q~ (.4) = 2s In A q- r (s = t/.. [4a-2  _ t l ' / ' ) .  

In accordance with (4.5) the parameter M(A) is determined by the 
relation 

M (.4) = 2 (s - -  a-*) A -1 

and N(A) by the relation (4.6). Thus the particular solution of gq. (0.1) 
has the form 

4 ,,7 'h 

+ (p0 -,-f~ arctg 2 ( +  -- s)]} �9 

Taking (5.2) into account, we rewrite this expression: 

[~ (.z) + ~ (x)l = D (az -k b) 'h exp [is in (az + b)l 

4 2 , IV, D = - - [ y  ( ~ - -  s)J exp {i [% + are tg2 (@ -- s)]}. 

Passing to the general solution (1.1). we obtain 

(x) = (ax -t- b) 1'' {C1 exp [is In (ax -k b)] -k 

+ C 2 exp [-- is In (az -[- b)]} (5.4) 

where C 1 and Cz are constants of integration. 
The validity of the solution which has just been found may easily 

be checked by direct substitution of (5.4) and (5.3) in the original 
equation (0.1). 

The example which has been considered shows that it is possible to 
apply both the grapho-analytie and the analytic variant of the asymp- 
totic method of solving the wave propagation problem in an inhomo- 
geneous medium. In the second case the appropriate transformations 
must be carried out without recourse to graphical constructiom, and 
in those cases when a fairly complex function k = k(A) is given numer-  
ical integration must be applied. 

Since the system of calculation for the proposed method, as 
distinct from familiar approximate methods in the theory of inhomo- 
geneous media, does not require any simplifying assumptions whatever, 
its accuracy is determined only by the accuracy of the calculations 
carried out in performing the elementary operations enumerated above 
(integration and transformation of the variable). 

Solutions of the wave propagation problem in an inhomogeneous 
medium have been obtained by the asymptotic method just considered 
for more complicated cases including a periodic dependence of the 
parameter on the coordinate, but are not given here due to lack of 

space. 
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