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The problem of the propagation of waves in an inhomogeneous medium
is solved on the basis of the equation for a partial wave of the total
field, After changing the independent variable x (the geometrical
coordinate) to A(x) (the amplitude factor of a direct partial wave of
the total field in the inhomogeneous medium) a modification of one
of the asymptotic methods of the theory of nonlinear oscillations is
applied,

It is well known that the differential equation
d¥ (koy 2} [ da® + k2 (kg )P (b, ) = 0 (0.1)

plays an important part in the theory of propagation of acoustic [1]
and electromagnetic [2] waves, that it describes a quasi-stationary
temperature field relative to moving coordinates [3], and, on passing
from k(kg, X) to the function (A2~ (ky, X)] it describes the passage
of matter waves through a potential barrier {4}, However, no method
has so for been developed which allows one to find the connection
between the function of the medium parameters k = k(kg, x) and the
total field function ¥ =¥(k,, x), and which is general enough to allow
one to determine P(k, x) with any degree of accuracy when the pa-
rameter k(kg, x) is an arbitrary function of the coordinatex, The
asymptotic method for the solution of wave propagation problems set
out below allows one to determine, on the basis of a selected auxil-
iary function, the corresponding functions ¥(k,, x) and k(kg, x)
simultaneously with any degree of accuracy specified in advance.

At the same time as solving the problem of wave propagation, the
asymptotic method allows one to consider also the case of non-propa-
gation of waves, when a solution occurs which is not oscillatory, but
behaves like real exponents and describes bound states belonging to
the discrete spectrum. This also lends confirmation to the assumption
made in the appendix of [5] that there may be a smooth transition
between the properties of the discrete spectrum and the properties of
the quasi-stationary states,

The asymptotic method is based on equations obtained by the
method of internal conditions [6,7], which may be regarded as a
generalization of the well-known Oseen theorem in optics [8] to wave
processes of a different nature, These equations for the direct «(x)
and inverse B(x) partial waves of the field ¥(x) in an inhomogeneous
medium have [9] the form

o'’ (kyy 2} + p (key )00 (hoy 7) ~+ K (kou 2) [k (koy 2) —
— ip (ky, 2] 00 (Ko, 2) = 0, 0.2)

B (key 2) + p (Ko @) B (g 2} A & (kopy ) [k Ry, 2) +
+ lP (kov -’t)] ﬁ (kh 'T) = 0 y (0'3)

where

P (ko 2) = 2 [Ink (kg DI' — [In & (o, 2)]', (0.4)

and differentiation with respect to the coordinate x is indicated by a
prime, The problem is solved in three stages.

In the first stage the amplitude A and phase ¢ factors are separated
from the direct wave and a change is made from the variable x to the
variable A(x), The second stage reduces to looking for the general
solution of the differential equation (0.1) with the help of phase
trajectories, and the third consists in passing back from A(x) to the
independent variable x,

Besides the independent equations (0.2) and (0.3), the solution pro-
cess also makes use of a system of coupled first-order equations

@' (ks 2) -+ [% (R, 2) — ik (ky, D] (K, 2) =
=% (kg 2) B (kyy 2}, 0.5)

B (ke 2) + [% (ks 2) + ik (koy 2)] B (Ko, 2) =
= % (ky, 2} (kss z),
2% (kyy 2) == [In k (Ko, )] (0.6)

somewhat more general [6] than the initial equation (0.1),

1. The basic relations of the asymptotic method.
The general solution of Eq. (0.1) is expressed in terms
of the nontrivial particular solution [o(x) + 8(x)] in the
following manner:

x

¥(2) = [a(2) + B (@[ €2 + Ca le @)+ B dmn | (L.1)

0

where C; and C, are constants of integration determined
from the initial conditions. We shall look for this
solution in the form

P (2) = Y [Cy+ C,¥ ], (1.2)

Yle{‘l"; —
x

=la@+p@) YT = la(@) +BENdn. (1.3)

0

The particular solution [ (x) + B(xX)] may be ex-
pressed in terms of o (x) only, taking (0.5), (0.6) into
account,

a(@)+8@) =20 @+t —igS]e@]. .9

Keeping in mind the necessity of passing to the
independent variable A(x) later on, we represent the
wave o (x) in the form

a (z) = A(2)e*®, (1.5)

and rewrite the particular solution (1.4) of Eq. (0.1) as

P @) |{L (=) + 19 (2)—

[a(z) + B (@) = 2
—k(@I" x exp{i[o(@) + arotg TAZZEAT] (1.6)

where

L (z) = A'(2)A™Hz) + K'(2)k-1 (2). (1.7
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Since the right side of (1.6) contains only the ampli-
tude and phase factors of the wave a(x), we shall re-
strict ourselves in what follows to a consideration of
Eq. (0.2). Using the method developed in the theory of
nonlinear oscillations, which reduces [10,11] to a
graphical construction of integral curves in the phase
plane, we introduce into (0.2) expressions for o '(x)
and o "(x) obtained by differentiating (1.5).
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Fig. 1

The system of two differential equations connecting
the amplitude A(x) and phase ¢(x) factors of the direct
partial wave o (x) then has the form

A"(z) + p (DA (2) + (B (2) — [¢" (2)]}4(z) = 0, (1.8)

Y@+ 25T+ p@]v @ —k@ p@=0. (L9
After making the changeé of variable x — A(x) we
use this system to solve the wave propagation problem
in a lossless inhomogeneous medium by the asymptotic

method.

2. Description of the method of solving the propa-
gation problem. We shall carry out a change of vari-
able in the system (1.8), (1.9), taking the wave number
to be a function of the amplitude factor A(x), i.e.,

k(x) = kK[A(x)] = k(A),

dk dk dA

. ’ k .
T =aads =t g =FATRE(A4).
We obtain
PE@) =4 —aA), C pa)=25_E g

for the coefficient p(x) determined by (0.4).
Introducing (2.1) into (1.8) and (1.9), we write

PAAT AP+ B = (@) o ¢ =

=1Ip (A)A™ (4")? + k2T, 2.2)
AAQ" — A (@' — A" + {[2 + Ap (A)lp" —
— Akp (A)} (4") = 0. (2.3)

Differentiating ¢! with respect to the coordinate
X, we obtain

ool rs

[ E ] (2.4)

We set expressions @' and ¢" in (2.3) and set A' =
= F, then

e[+ B4 g (s
)i )T

Let 6 = arc tg F"be the angle of incidence of the
tangent to the curve F = F(A) in the phase plane AOF,
We then obtain the key equation of the asymptotic
method of solving wave propagation problems, remem-
bering that F' = F'F, in the form

tg 0 ={p (4) + [L ) + /, (AFID™* (4, F)\F, (2.5)
fLld) =k (4) + 2k (4)A™, (2.6)

f2(4) = p (4) [Ak (AT {p (4) + 324 +
+p (4) [2p (4)1, @.7)
D (A, F) = k(4) — [p (DAFE £ 1 (A))s.  (2.8)

It is not a difficult matter to find the functions
Fi(A), f2(A), ® (A, F) and p(A) entering into Eq. (2.5),
for the function k(A) = k[A(x)] corresponding to the
function k = k(x) specified by the conditions of the
given problem. Consequently, the angle 6§ may also
be determined for an arbitrarily chosen point P(A,F)
on-the phase plane AOF, and subsequently a system of
curves F = F(A) may be constructed which in accor-
dance with the asymptotic method of the theory of
nonlinear oscillations, will be called the direction
field in the phase plane.
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We note three basic properties of the first stage in
solving the problem which must be kept in mind in
carrying out the first stage, i.e,, in passing back from
the variable A to the independent variable x.

(a) The system of curves F = F(A) of the direction
field may easily be transformed to the system of
curves x* = f(A) and after integration (with respect to
the variable A) transferred to the plane AOx. The
system of curves obtained A = A(x) characterizes the
dependence of the amplitude factor of the direct par-
tial wave A(x) on the coordinate x; the curves of this
system are shifted relative to each other along the
Ox axis. This procedure enables us to ascertain im-
ediately the amplitude factor A(x) of the direct partial
wave o (x) entering into the particular solution of the
initial equation (0.1) as a function of the initial coordi-
nate x.
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(b) While determining A(x), it is also possible to
establish, from the chosen function k = k(A), the
initial law of variation of wave number along the coor-
dinate, i.e., to find the function k = k(x) corresponding
to any of the functions A = A(x) found as described in
(a). At the same time, an unambiguous connection is
established between the law of variation of the param-
eter k = k(x) and the amplitude factor of the direct
partial wave A(x) entering into the particular solution
(1.6) of the initial differential equation (0.1).

(c) In order to find the phase factor of the direct
partial wave ¢ = ¢(x) we must employ Eq. (2.2), which
determines the gradient of the required phase factor
@'(x). Taking into account that

¢ =¢F
it is convenient to represent Eq. (2.2) in the form

¢ = {p (DA™ + [k (AF(A)Pyh. (2.9)

=
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Fig. 3

After integration with respect to the variable A it is
not difficult to obtain the function ¢ = ¢(A) for any
curve F = F(A) of the previously constructed direction
field. In accordance with (b) it is here possible, by
choosing any specific curve A = A(x) and thus speci-
fying the function k = k(x) unambiguously, to transform
the function ¢ = @(A) obtainedinto the required function
¢ = ¢(x). Thus from the function k = k(A) selected it
is not difficult to find both the law of variation of the
properties of the inhomogeneous medium along the
coordinate k = k(x) and the direct partial wave a(x) =
= A(x)e!?(®) of the total field in the medium. Of great
importance is the possibility we now have of applying
this to both direct and inverse variants of the wave
propagation problem, which reduces to a choice of the
function k = k(A) arising from the required law k = k(x)
for the medium, or from the required total field i(x)
in the medium,

The second stage in solving the problem reduces to
finding the general solution y(x) of the initial equation
(0.1). For this reason we change the variable in (1.6)
from x to A just as when we were establishing with the
help of the function k = k(A) the connection between the
direct partial wave o (x) and the law of variation of the
properties of the medium along the coordinate k = k(x),

i.e., we pass from k(x), k' and ¢' to K(A), k" and ¢

[o+ B) = 2| 5 4| (M2 + N exp[i (o +
+ are'tg _ILVLH (2.10)

where the following symbols are employed for the
auxiliary functions:
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Comparing (2.10) and (1.3), it is not difficult to
establish that the functions Yy, ¥,, Y,, ¥, appearing in
the general solution (1.2) are equal to

Yi=2|4 4|00+ W% Wi=o+aretg g, (2.12)

Vo= (J2 A% Wy,=arctg % . (2.13)
Here
-AI Al
Ji= SRI(A)dA, Iy = SRZ(A)dA,
0 0
R, (4) = cos 2, [Y2FT™,
R, (4) = sin 2%, [Y2FI (2.14)
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Thus, in order to find the general solution y(x)of the
wave equation (0.1) starting from the function k = k(A)
and any definite chosen curve F = F(A) from the previ~
ously constructed direction plane, it is necessary to
transfer the graphs of ¢ = @(A) to the phase plane AOF
(in accordance with paragraph (c) of the first stage of
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the solution), and also the graphs M = M(A) and N =
= N(A) from formulas (2.11), Further, the functions
Y; = Y;(A) and ¥, = ¥ (A) must be found with the help
of formulas (2.12). In order to find the functions Y, =
= Y,(A) and ¥, = ¥,(A), which are determined by the
relations (2.13), we must first of all construct the
curves R, = R (A) and R, = Ry(A) from (2.14).
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In accordance with (1.2) the functions which are
found Y;, ¥;, Y; and ¥ give a full description of the
general solution ¥(A) of the initial equation (0.1), which
is represented as a function of the intermediate vari-
able A(x).

In the third stage of the solution of the problem we
pass back from the variable A(x) to the original inde-
pendent variable x. It is here necessary to keep in
mind that the law of variation of the wave vector along
the coordinate k = k(x), corresponding to the general
solution ¥(A) found and to the chosen function k = k(A),
was determined previously (see paragraph (b) of the
first stage of the solution), After the change of vari-
able from A to x, the general solution #(x) of Eq. (0.1)
is represented, according to (1.2), in the form of four
functions Y,(x), ¥,(x), Yy(x) and ¥,(x), and corresponds
to the appropriate function k = k(x).

3. Certain properties of the asymptotic method
which allow the solution of the problem to be simplified.
When using the asymptotic method for solving the prob-
lem of wave propagation in an inhomogeneous medium
we should keep in mind that it is an especially simple
matter to construct the so-called boundary trajectories
on which the phase ¢{x) of the wave «(x) is constant.
Actually the auxiliary function (2.8) is purely real in
accordance with the requirements of the problem.
Thus for the expression which appears in it under the
root sign

(PATIF? £ 1#) > 0.

By definition F = A', and so in accordance with
(2.4) we obtain

(PATF + ) = (¢ > 0. @8.1)

Consequently, the phase of the wave «(x) does not
have an imaginary part (i.e., there is no damping

when the wave propagates in the medium). It follows
from (3.1) that in particular '
F <k (— pATYh,
The inverse condition
(pA™IF? + k3 < 0
assumes the case of purely imaginary phase mentioned
in the introduction, when the wave does not propagate
in the medium but is exponentially damped, i.e., when
there is a nonoscillatory solution which describes
bound states belonging to the discrete spectrum, This
case is not considered here because of lack of space.
The intermediate case (critical condition) occurs
when

p(4) <O

(PAIF? 4+ %) = 0.

This case corresponds to the condition ¢! = 0, while
the curves in the plane AOF described by the equation

F =k (— pA-Y (3.2)

are the boundary trajectories, the construction of which
is a considerable aid not only in establishing the con-
nection with the function k = k(x), but also in finding
the curves F = F(A). The basic properties of the curves
F = F(A) forming the direction field are as follows:

a) The direction field in the plane AOF is symmet-
rical with respect to the OA axis, and so it suffices to
consider only the region in which F = 0. Passing to
the case F < 0 is completely equivalent to the specular
reflection of the curve A = A(x) in the plane AOx rel-
ative to the OA axis.

Fig. 7

b) Points at which ¥*= 0, i.e., points at which the
tangents to the curve F = F(A) of the direction field
are horizontal, are determined for F = 0, F = « by
the equation

Pr= L+ 1) + o o[k —

i~ 141

T A (3.3)
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c) On the other hand for the case F — 0 corre-
sponding to the OA axis, it follows from Eq. (2.5) that
forfy =0, p= =

lim F — oo for F —0,

and consequently that the tangents to the curves F =
= F(A) are vertical at the points where they intersect
the OA axis, while the points where f;, = 0, p= = re-
quire additional investigation.

Moreover,

lim F- - o for F — «, and lim F* — « for A — 0,
i.e., the curves F = F(A) have vertical asymptotes
for F — = as well as for A — 0.

d) It follows from the linearity of the wave propa-
gation problem in an inhomogeneous medium without
dispersion that when the parameter k(A) or its argu-
ment is multiplied by a constant quantity ¢ it is only
necessary to carry out the corresponding change of
scale along the coordinate x (or of the amplitude of
the direct partial wave). Actually, it follows from the
main equation of the problem (2.5) that in passing from
the parameter k{A) to the new parameter kK°(A) = ck(A),
where c is a constant, it suffices to change the function
F(A) in the main equation to the function ¥F°(A) = cF(A).
The result of this is that when the parameter k(A) is
changed to the parameter k°(A) the variable A = A(x)
must be changed to the variable A® = A(x/c), and k(x)
to k® = ck{x/c). Similarly, the change of variable k(A)—~
— k(cA) requires the change A = A(x) — A°= c™!A(x)
while retaining the parameter k = k(x).

4, Anexample of the solution of the wave propagation problem,
We shall first of all consider the grapho-analytic variant of the asymp-
totic method as being more intuitive, We shall choose a function k =
=k(A), which shows how the parameter k of the inhomogeneous
medium depends on the coordinate x, in the following form:

k(d)=4""
i, e., we take that

k(z) = (gz -+ B, (4.1)
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Since p(A) = —A™t, fi(A) =0, fy(A) =0, according to (2.1),
(28), (2.7), the main equation (2,5), determining the angle of
inclination 6 of the tangents to the family of curves F = F(A), is written
in the form

tg0 = F' (4) = — FA-1, (4.2)

Thus the equation of the boundary trajectories (3.2) has the form

F{A) =k {A)[—p (M)A =47, (4.3)

The boundary trajectory constructed from (4,3) is drawn as a broken
line in Fig, 1, and the region corresponding to the case of a purely
imaginary phase factor ¢(x), i,e., to conditions which forbid the
propagation of waves, is cross-hatched,
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Just as in the theory of nonlinear osciilations, it is not difficult fo
comstruct the direction field, i.e., the system of curves F = F(A), by
constructing, through arbitrarily chosen points situated in the region
which allows wave propagation, a system of straight segments whose
angle of inclination relative to the OA axis is determined at every
point of the plane AOF by (4.2). The form of the boundary trajectory
should be taken into account in order to render the construction easier,

By way of example, we shall construct in the plane AOF of Fig, 1,
one of the curves of the family F = F(A) for which we have F =0,5,
0.25 and « when A =1,2 and 0, and map it onto the plane xOA, In
order to do this, according to Fig. 2 we transfer this curve from the
AOF system of coordinates to the x*OA system of coordinates and
employ the relations A' =F which is obvious by definition, Conse-
quently, the function Fl=x will, for the curve selected, be equal to
2.0; 4.0 and 0, respectively, and the curve of Fig. 1 will map into
the straight line in Fig, 2 passing through the origin of ccordinates,

In order to map the straight line of Fig. 2drawnonthe intermediate
plane x* OA into a curve on the plane xOA, dictated by the conditions
of the wave propagation problem, it must be integrated with respect
to the variable A which has been temporarily introduced, and so,
leaving the vertical axis unchanged, we pass from x° to x on the
horizontal axis in accordance with the rules of graphical integration.

Since the integration is carried out for arbitrary initial conditions,
it is possible to obtain a series of other curves in addition to the curve
x =x%(A) which has been drawn, and which is at the same time the
graph of the function A = A(x). All these curves will differ from each
other only in the magnitude of their displacement along the Ox.

The original function k = k(x) is constructed from the curve A =
= A(x), which has been found, and the graph k =k(A), which is given,
in accordance with Fig, 3, where, in addition to the integral curve
1 already considered, curves 2,3 and 4 are also drawn, for which the
constant coefficients characterizing the function k = (ax + by are
equaltoa =1, 1, —1, —landb =0, 1, 5, 10, respectively.

The general factor Ylewl of the solution (1.2) of Eq. (0.1), corre-
sponding to the chosen function k = k(A) is determined in the following
manner, On the plane AOg of Fig, 4 the curve ¢ = ¢(A) is drawn,
having been found by graphical integration of the curve ¢+(A) con-
structed according to formula (2.9), which it is convenient to transcribe
in the following manner for this purpose:

@ = A" [(AF)—1]", (4.4)
In carrying out the construction it should be kept in mind that the

initial conditions in the integration are taken into account by the
choice of constants Cy and C, in (1.1). Further the parameters M(A}
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and N(A) are calculated from (2.11), For the case of (4,1), in partic-
ular, we obtain

M (4) = {[1 — (AF)}A — 1) (4%F)L, (4.5)
N@d)=—4", (4.6)

Finally, graphs of the functions Y, =Y,(A) and ¥ = ¥,(A) are
constructed in Fig. 5 using formulas (2.12).

In order to find the general solution ¥(x) of the wave equation (0.1)
we must also find the functions Y, = Y,(A), which is done by drawing
graphs of the functions Ry = Ry(A) and Ry = Ry(A) from (2,14), and
subsequently integrating them with respect to the variable A. The
respective operations, and also the curves for the functions J;(A) and
Jo(A), are presented in Figs, 6 and 7, The required functions Y, =
=Yy(A) and ¥, = ¥,(A), calculated from (2.13), are drawn in Fig, 8.

In carrying out the final, third stage of the solution, i,e., in
passing from A to x, it is necessary to be specific and choose one
particular curve from the family of curves k = k(x) (Fig, 3), constructed
with the help of the curve Fig, 1, for example, curve 2, and also the
graph of the function A = A(x) corresponding to the curve chosen, The
latter is drawn in Fig, 2 as a still unaveraged broken line, and is,
moreover, represented in the first square of Fig, 3, Here the transfor-
mation of the variable reduces {(since in accordance with the graphs of
Fig. 3, a completely determined value of the coordinate x corresponds
to each value of A(x)) to replacing the argument A of the functions
Y, =Y (A), ¥ =¥,(A), Y, =Yy(A)and ¥, = ¥,(A) by the argument x.

The functions Y; = Yy(X), ¥; = ¥,(X), Y; = Yg(x) and ¥ = ¥, (x)
constructed and drawn in Fig. 9 completely determine the solution of
the problem of wave propagation in an inhomogeneous medium, for
which the law (4.1) of variation of the parameter along the axis of the
coordinate x is described by curve 2 of the fourth square of Fig. 3.

5, Analysis of the asymptotic method and comparison with the
exact solution of the propagation problem, We shall carmry out a com-
parison of the proposed asymptotic and exact methods using the analyt-
ic variant of the asymptotic method, i, e., without recourse to graph-
ical construction, Considering the example which has just been solved
for k(A) = A™?, we shall, for this purpose, first of all determine the
function A = A(x) starting from (4.2), Integrating the equation F+ =
= —FA™, we obtain

= 1,047t (5.1)

Further, taking into account that F = A' in Eq, (5.1) and integrating it,
we obtain

4 = (ax + b)', (5.2)

Here 1/2a and b are consants of integration. Thus the given
function k =k(A) = A™? corresponds to the following dependence of the
parameter of the inhomogeneous medium on the coordinate:

k(z) = k [4 (2)] = (az +- )7 (5.3)

Comparison of the relation obtained (5.3) with the graph Fig, 3
attests to the fact that the constant of integration b characterizes the
magnitude of the displacement of the curve k = k(x) along the hori-
zontal axis. As has already been noted, thisdisplacementisdetermined
only by the inital conditions assumed in the graphical integration of
the function A = A(x*), plotted in Fig, 2 in the form of a straight line,
Whence it follows that when integrating graphically with respect to
the variable A the lower limit must be set equal to bl/z, then the
choice of one or other of the family of curves F =F(A) drawn in Fig, 1
and characterized by the given function k =k(A) serves as the constant
of integration ¢. On passing to the coordinates A, x° this now corre-
sponds to the function A = A(x+),

In particular, the choice made in Fig. 1 of the curve passing
through the point with coordinates F =0,5, A =1, (in solving the
problem by the grapho-analytic variant) is equivalent to choosing a =
=1 in (5.3), When determining the phase of the direct partial wave

by integrating (4.4) with respect to the variable A and subsequently
taking (5.1) into account we write

QA)=2s1nd + (s = Y, 4a~® — 117,

In accordance with (4.5) the parameter M(A) is determined by the
relation

MA)=2(s—a A1

and N(A) by the relation (4.6). Thus the particular solution of Eq, (0.1}
has the form

Ja(x) $B8(z)]=—A4 I:% (% — s)]l/z exp {i {2.9 In A+

1
+ @o 4~ arctg 2 (7 — s)]} .
Taking (5.2) into account, we rewrite this expression:

e (z) + B ()] =D (az + B exp [is In (az + b)]
D=— [.4_ (3 — sﬂ‘/z exp {i l:tpo + are tg 2 (% -—_— s)]} .

a\a
Passing to the general solution (1.1). we obtain

P (2) = (az -+ b)"* {C; exp [is In (az + b)] +
+C, exp [— is In (az + b)]} (5.4)

where C; and C, are constants of integration,

The validity of the solution which has just been found may easily
be checked by direct substimtion of (5.4) and (5.3) in the original
equation (0.1).

The example which has been considered shows that it is possible to
apply both the grapho-analytic and the analytic variant of the asymp-
totic method of solving the wave propagation problem in an inhomo-
geneous medium. In the second case the appropriate transformations
must be carried out without recourse to graphical constructions, and
in those cases when a fairly complex function k =k(A) is given numer-
ical integration must be applied.

Since the system of calculation for the proposed method, as
distinct from familiar approximate methods in the theory of inhomo-
geneous media, does not require amy simplifying assumptions whatever,
its accuracy is determined only by the accuracy of the calculations
carried out in performing the elementary operations enumerated above
(integration and transformation of the variable).

Solutions of the wave propagation problem in an inhomogeneous
medium have been obtained by the asymptotic method just considered
for more complicated cases including a periodic dependence of the
parameter on the coordinate, but are not given here due to lack of
space,
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